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Abstract: In this paper, we establish some sufficient conditions for the existence and nonexstence of positive
solutions to a general class of higher-order nonlinear fractional differential equation. The results are established
by converting the problem into an equivalent integral equation and applying Banach fixed point theorem, nonlinear
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type. As applications, some examples are also provided to illustrate our main results.
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1 Introduction
Fractional differential equations arise in many engi-
neering and scientific disciplines as the mathematical
modelling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of
complex medium, polymer rheology, bode’s analysis
of feedback amplifiers, capacitor theory, electrical cir-
cuits, electron-analytical chemistry, biology, control
theory, fitting of experimental data, and so on. Frac-
tional differential equations also serve as an excellent
tool for the description of hereditary properties of var-
ious materials and processes. For example, in physics,
the traditional way to deal with the behavior of cer-
tain materials under the influence of external forces
in mechanics uses the laws of Hooke and Newton. If
we are dealing with viscous liquids, then we can use
Newton’s law ηε′(t) = σ(t), where σ(t) and ε(t) de-
note stress and strain at time t respectively, η is the
so-called viscosity of the material. In view of all some
possible interpolation properties, it is natural for us to
design the classical Newton’s law according to

ηDk
0+ε(t) = σ(t), k ∈ (n− 1, n), n ∈ N,

which is called Nutting’s law [1]. In consequence,
the subject of fractional differential equations is gain-
ing much importance and attention. There are a large
number of papers dealing with the existence, nonexis-
tence, multiplicity of solutions and positive solutions
with initial or boundary value problem for some non-
linear fractional differential equations. For details and
examples, see [2–25] and the references therein. In

[14], Wang have discussed the existence of positive
solutions to the fractional boundary value problem
with changing sign nonlinearity as follows:{

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u(1) = 0.

In [9], Zhang have investigated the existence
of multiple positive solutions for the fractional dif-
ferential equation with a negatively perturbed term
Dirichlet-type boundary value problem as follows:{

−Dα
0+u(t) = p(t)f(t, u(t))− q(t), 0 < t < 1,

u(0) = u′(0) = u(1) = 0,

where Dα
0+ is the standard Riemann-Liouville deriva-

tive, 2 < α ≤ 3 is a real number, q : (0, 1)→ [0,+∞)
is Lebesgue integrable and does not vanish identically
on any subinterval of (0,1).

However, to the best our knowledge, there is rare
paper dealing with the singular higher-order nonlin-
ear fractional differential equation. Motivated by the
above mentioned discussions, in this paper, we will
study the existence and nonexistence of positive solu-
tions for the following higher-order singular nonlinear
fractional differential equation (BVP for short):{

−Dα
0+u(t) = p(t)f(t, u(t)) + q(t),

u(0) = u(k)(0) = u(1) = 0,
(1)

where 0 < t < 1, k = 1, 2, . . . , n − 2. Dα
0+

is the standard Riemann-Liouville derivative of or-
der n − 1 < α ≤ n, n ≥ 3. f ∈ C([0, 1] ×
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[0,+∞), [0,+∞)), f may be singular at u = 0.
p(t), q(t) ∈ C([0, 1], [0,+∞)), p(t) may be singular
at t = 0 or / and at t = 1, and q(t) is Lebesgue in-
tegrable and does not vanish identically on any subin-
terval of (0, 1). By applying Banach fixed point theo-
rem, nonlinear differentiation of Leray-Schauder type
and the fixed point theorems of cone expansion and
compression of norm type, sufficient conditions for
the existence and nonexistence of positive solutions
to a general class of boundary value problems for a
higher-order singular nonlinear fractional differential
equation are obtained.

The rest of this paper is organized as follows. In
Section 2, we recall some useful denitions and prop-
erties, and present the properties of the Green’s func-
tions. In Section 3, we give some sufficient conditions
for the existence or nonexistence of positive solutions
for BVP (1). In Section 4, some examples are also
provided to illustrate the validity of our main results.
Finally, the conclusion is made to simply recall the
methods, skills and applications of this paper in Sec-
tion 5.

2 Preliminaries
For the convenience of the reader, we present here
the necessary definitions and lemmas on the fractional
calculus theory.

Definition 1. ([26, 27]) The Riemann-Liouville frac-
tional integral of order α > 0 of a function u :
(0,+∞) → R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

provided that the right-hand side is pointwise defined
on (0,+∞).

Definition 2. ([26, 27]) The Riemann-Liouville frac-
tional derivative of order α > 0 of a continuous func-
tion u : (0,+∞) → R is given by

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1u(s)ds,

where n − 1 < α ≤ n, provided that the right-hand
side is pointwise defined on (0,+∞).

Lemma 3. ([18]) Assume that u ∈ C(0, 1) ∩ L(0, 1)
with a fractional derivative of order α > 0. Then

Iα0+D
α
0+u(t) = u(t)+C1t

α−1+C2t
α−2+· · ·+Cntα−n,

for some Ci ∈ R, i = 1, 2, . . . , n, where n is the
smallest integer greater than or equal to α.

Lemma 4. ([28]) Let E be a Banach space with
C ⊆ E closed and convex. Assume U is a relatively
open subset of C with θ ∈ U and T : U → C is a
continuous compact map. Then either

(a) T has a fixed point in U ; or

(b) there exists u ∈ ∂U and λ ∈ (0, 1) with u =
λTu.

Lemma 5. ([29]) Let E be a Banach space, P ⊆ E
a cone, and Ω1, Ω2 are two bounded open balls of E
centered at the origin with θ ∈ Ω1 and Ω1 ⊂ Ω2.
Suppose that A : P ∩ (Ω2 \Ω1) → P is a completely
continuous operator such that either

(i) ∥Au∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Au∥ ≥ ∥u∥,
u ∈ P ∩ ∂Ω2, or

(ii) ∥Au∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1 and ∥Au∥ ≤ ∥u∥,
u ∈ P ∩ ∂Ω2

holds. ThenA has at least one fixed point in P ∩(Ω2\
Ω1).

Now we present the Green’s function and its rela-
tive properties for the boundary value problem (1).

Lemma 6. Given h ∈ C[0, 1], and n − 1 < α ≤ n,
the unique solution of (2){

Dα
0+u(t) + h(t) = 0, 0 < t < 1,

u(0) = · · · = u(k)(0) = u(1) = 0.
(2)

is

u(t) =

∫ 1

0
G(t, s)h(s)ds, (3)

where k = 1, 2, . . . , n− 2,

G(t, s) =


[t(1−s)]α−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,

[t(1−s)]α−1

Γ(α) , 0 ≤ t ≤ s ≤ 1.

(4)

Proof: Applying Lemma 3, we get

u(t) = −Iα0+h(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n

= − 1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds+ c1t

α−1

+ c2t
α−2 + · · ·+ cnt

α−n
,

for some ci ∈ R, i = 1, 2, . . . , n. From u(0) = u′(0)

= . . . = u(n−2)(0) = 0, we can obtain that c2 = c3 =
· · · = cn−2 = 0. Then

u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds+ c1t

α−1.
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By u(1) = 0, we have

c1 =
1

Γ(α)

∫ 1

0
(1− s)α−1h(s)ds.

Therefore, the unique solution of boundary value
problem (2) is

u(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

+ tα−1

[
1

Γ(α)

∫ 1

0
(1− s)α−1h(s)ds

]
.

= − 1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

+
1

Γ(α)

∫ t

0
tα−1(1− s)α−1h(s)ds

+
1

Γ(α)

∫ 1

t
tα−1(1− s)α−1h(s)ds

=

∫ 1

0
G(t, s)h(s)ds,

where G(t, s) is defined by (4). Now, we will prove
the uniqueness of solution for BVP (2). In fact, let
u1(t), u2(t) are any two solutions of (2). Denote
w(t) = u1(t) − u2(t), then (2) be changed into the
following system:{

Dα
0+w(t) = 0, t ∈ [0, 1], n− 1 < α ≤ n,

w(0) = w′(0) = · · · = w(n−2)(0) = w(1) = 0.

Similar to above argument, we get w(t) = 0, that is
u1(t) = u2(t), which mean that the solution for BVP
(2) is unique.The proof is complete. ⊓⊔

Lemma 7. The function G(t, s) is defined by (4) sat-
isfies

(i) G(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1],
G(t, s) > 0 for all t, s ∈ (0, 1);

(ii) G(t, s) ≤ G(τ(s), s) for each t, s ∈ [0, 1], and
mint∈[θ,1−θ]G(t, s) ≥ γG(τ(s), s), ∀s ∈ [0, 1],
where θ ∈ (0, 1/2), γ is a constant with 0 < γ ≤
θα−1 and

τ(s) =
s

1− (1− s)(α−1)/(α−2)
> s.

Similar to the methods of the Proposition 2.2
and Proposition 2.9 in the paper [13], we can prove
Lemma 7. So we omit it.

3 Existence and nonexistence of pos-
itive solutions

In this section, we will discuss the existence and
nonexistence of positive solutions for BVP (1).

Let Jθ = [θ, 1 − θ] for θ ∈ (0, 1/2) and E =
{u(t) : u(t) ∈ C[0, 1]} denote a real Banach space
with the norm ∥·∥ defined by ∥u∥ = max0≤t≤1

∣∣u(t)∣∣.
Define the cone P ⊂ E by

P = {u ∈ E : u(t) ≥ 0} .

Let

K =

{
u ∈ P : u ≥ 0,min

t∈Jθ
u(t) ≥ γ∥u∥

}
, (5)

Kr = {u ∈ K : ∥u∥ < r}, (6)

with ∂Kr = {u ∈ K : ∥u∥ = r}.
From Lemma 6, we can obtain the following im-

portant Lemma 8, which indicate that BVP (1) and (7)
have the same solutions.

Lemma 8. Suppose that f(t, u) is continuous, then
u ∈ E is a solution of BVP (1) if and only if u ∈ E is
a solution of the integral equation

u(t) =

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds. (7)

Define the operator T : E → E as follows

(Tu)(t) =

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds.

(8)

Then by Lemma 8, the fixed point of operator T coin-
cides with the solution of system (7).

Lemma 9. Let f(t, u) be continuous on (0, 1) ×
[0,+∞) → [0,+∞), then T : P → P and T : K →
K defined by (8) is completely continuous.

Proof: Firstly, we will show that T : P → P is
uniformly bounded and equicontinuous. In fact, Let
u ∈ P, in view of nonnegativeness and continuity
of functionsG(t, s), p(t), q(t) and f(t, u(t)), we con-
clude that T : P → P is continuous.

Let Ω ∈ P be bounded, that is, there exists a pos-
itive constant h > 0 such that ∥u∥ ≤ h for all u ∈ Ω.

Let

M = max
0≤s≤1,0≤u≤h

{
∣∣p(s)f(s, u(s)) + q(s)

∣∣+ 1}.
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Then we have

∥Tu∥ = max
0≤t≤1

(Tu)(t)

≤
∫ 1

0
G(τ(s), s) [p(s)f(s, u(s)) + q(s)] ds

≤M

∫ 1

0
G(τ(s), s)ds.

Hence, T (Ω) is uniformly bounded.
Since G(t, s) is continuous on [0, 1] × [0, 1], it is

uniformly continuous on [0, 1]× [0, 1]. Thus, for fixed
s ∈ [0, 1] and for any ε > 0, there exists a constant
δ > 0 such that any t1, t2 ∈ [0, 1] and |t1 − t2| < δ,

|G(t1, s)−G(t2, s)| <
ε

M
.

Then

|Tu(t2)− Tu(t1)|

≤ M

∫ 1

0
|G(t1, s)−G(t2, s)| ds < ε,

that is to say, T (P ) is equicontinuous. By the means
of the Arzela-Ascoli theorem, we have T : P → P is
completely continuous.

Now we show that T : K → K. In fact, For any
u ∈ K, Lemma 7 implies that

(Tu)(t) ≥ γ

∫ 1

0
G(τ(s), s)[p(s)f(s, u(s))

+q(s)]ds, t ∈ Jθ.

On the other hand

∥Tu∥ = max
0≤t≤1

(Tu)(t)

≤
∫ 1

0
G(τ(s), s)[p(s)f(s, u(s)) + q(s)]ds.

Then (Tu)(t) ≥ γ∥Tu∥, which implies T : K → K.
According to the Ascoli-Arzela theorem, we have

proved that T : K → K is completely continuous
operator. The proof is complete. ⊓⊔

Theorem 10. Assume that p(t) is continuous on (0, 1)
→ [0,+∞), and f(t, u) is continuous on (0, 1) ×
[0,+∞) → [0,+∞), and there exists a positive func-
tions m(t) that satisfies∣∣f(t, u1)− f(t, u2)

∣∣ ≤m(t)
∣∣u1 − u2

∣∣,
for all t ∈ (0, 1), u1, u2 ∈ [0,+∞). Then BVP (1) has
a unique positive solution if

ρ =

∫ 1

0
G(τ(s), s)p(s)m(s)ds < 1. (9)

Proof: For all u ∈ P, by the nonnegativeness of
G(t, s), p(t), q(t) and f(t, u), we have (Tu)(t) ≥ 0.
Hence, T (P ) ⊂ P. From Lemma 7, we obtain

∥Tu2 − Tu1∥ = max
t∈[0,1]

∣∣Tu2 − Tu1
∣∣

= max
t∈[0,1]

∣∣∣∣ ∫ 1

0
G(t, s)[p(s)f(s, u1(s)) + q(s)

− p(s)f(s, u2(s))− q(s)]ds

∣∣∣∣
≤
∫ 1

0
|G(τ(s), s)p(s)[f(s, u1(s))− f(s, u2(s))]| ds

≤
∫ 1

0
G(τ(s), s)p(s)m(s)ds∥u1 − u2∥

= ρ∥u1 − u2∥.

From Lemma 9, T is completely continuous. By (9)
and the Banach contraction mapping principle, the op-
erator T has a unique fixed point in P , which is the
unique positive solution of BVP (1). This completes
the proof. ⊓⊔

Theorem 11. Assume that p(t) and q(t) are continu-
ous on (0, 1), and f(t, u) is continuous on (0, 1) ×
[0,+∞). For all t ∈ [0, 1], if there exist c1(t) ≥
0, c2(t) ≥ 0 such that the following conditions (H1)
and (H2) hold.

(H1)
∣∣f(t, u(t))∣∣ ≤ c1(t) + c2(t)

∣∣u(t)∣∣.
(H2) C1 =

∫ 1
0 G(τ(s), s)p(s)c2(s)ds < 1,

C2 =
∫ 1
0 G(τ(s), s)p(s)c1(s)ds <∞,

C3 =
∫ 1
0 G(τ(s), s)q(s)ds <∞.

Then the BVP (1) has at least one positive solution
u(t) in

Q =

{
u ∈ P : ∥u∥ < C2 + C3

1− C1

}
.

Proof: For convenience, we denote r = C2+C3
1−C1

. De-
fine the operator T : Q → P as (8). Let u ∈ Q, that
is, ∥u∥ < r. From Lemma 7, we obtain

∥Tu∥ = max
t∈[0,1]

∣∣Tu(t)∣∣
= max

t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)[p(s)f(s, u(s)) + q(s)]ds

∣∣∣∣
≤
∫ 1

0
G(τ(s), s)p(s)(c1(s) + c2(s)

∣∣u(s)∣∣)ds
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+

∫ 1

0
G(τ(s), s)q(s)ds

≤
∫ 1

0
G(τ(s), s)p(s)c1(s)ds

+

∫ 1

0
G(τ(s), s)p(s)c2(s)ds∥u∥

+

∫ 1

0
G(τ(s), s)q(s)ds

= C2 + C1∥u∥+ C3 < r.

Thus Tu ∈ Q. By Lemma 9, we have T : Q → Q is
completely continuous.

Consider the eigenvalue problem

u = λTu, λ ∈ (0, 1). (10)

Under the assumption that u ∈ ∂Q, that is, u is a
solution of (10) for a λ ∈ (0, 1), one obtains

∥u∥ = ∥λTu∥

= λ max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

∣∣∣∣
≤
∫ 1

0
G(τ(s), s)p(s)(c1(s) + c2(s)

∣∣u(s)∣∣)ds
+

∫ 1

0
G(τ(s), s)q(s)ds

≤
∫ 1

0
G(τ(s), s)p(s)c1(s)ds

+

∫ 1

0
G(τ(s), s)p(s)c2(s)ds∥u∥

+

∫ 1

0
G(τ(s), s)q(s)ds

= C2 + C1∥u∥+ C3 < r.

So ∥u∥ ̸= r, which is contradiction with u ∈ ∂Q.
According to Lemma 4, T has a fixed point u ∈ Q,
Therefore, BVP (1) has at least one positive solution.
This completes the proof. ⊓⊔

In the rest of the paper, for the convenience of pre-
sentation, we always suppose that the following hy-
potheses hold.

(B1) p, q ∈ C((0, 1), [0,+∞)), p(t) ̸≡ 0 and q(t) ̸≡
0 on any subinterval of (0, 1).

(B2) f ∈ C((0, 1)×[0,+∞), [0,+∞)), and f(t, 0) =
0 uniformly with respect to t on (0, 1).

In addition, we introduce some notations as follows:

f δ = lim sup
u→δ

max
t∈[0,1]

f(t, u)

u
,

fδ = lim inf
u→δ

min
t∈[0,1]

f(t, u)

u
,

where δ denotes 0 or +∞, and

σ1 =

∫ 1

0
G(τ(s), s)p(s)ds,

σ2 =

∫ 1

0
G(τ(s), s)q(s)ds.

Theorem 12. Assume that (B1)–(B2) hold. And sup-
pose that one of the following conditions is satisfied:

(H3) f0 > 1/(γ2σ1) and f∞ < 1/σ1 (particularly,
f0 = ∞ and f∞ = 0 ).

(H4) there exist two constants r2, R2 with 0 < r2 ≤
R2 and R2 > σ2 such that f(t, ·) is nondecreas-
ing on [0, R2] for all t ∈ [0, 1], f(t, γr2) ≥
r2/(γσ1), and f(t, R2) ≤ (R2 − σ2)/σ1 for all
t ∈ [0, 1].

Then BVP (1) has at least one positive solution.

Proof: Let T be cone preserving completely continu-
ous that is defined by (8).
Case 1. When the condition (H3) holds. Consid-
ering f0 > 1/(γ2

∫ 1
0 G(τ(s), s)p(s)ds), there ex-

ists r1 > 0 such that f(t, u) ≥ (f0 − ε1)u, for
all t ∈ [0, 1], u ∈ [0, r1], where ε1 > 0, satis-
fies (f0 − ε1)γ

2
∫ 1
0 G(τ(s), s)p(s)ds ≥ 1. Then, for

t ∈ [0, 1], u ∈ ∂Kr1 , from Lemma 7 and (5) we get

∥Tu∥ = max
t∈[0,1]

(Tu)(t)

= max
t∈[0,1]

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

≥ max
t∈Jθ

∫ 1

0
G(t, s)[p(s)f(s, u(s)) + q(s)]ds

≥ min
t∈Jθ

∫ 1

0
G(t, s)p(s)f(s, u(s))ds

≥ γ

∫ 1

0
G(τ(s), s)p(s)f(s, u(s))ds

≥ γ

∫ 1

0
G(τ(s), s)p(s)(f0 − ε1)u(s)ds

≥ (f0 − ε1)γ
2

∫ 1

0
G(τ(s), s)p(s)ds∥u∥ ≥ ∥u∥.

Therefore,

∥Tu∥ ≥ ∥u∥, u ∈ ∂Kr1 . (11)

On the other hand, for f∞ < 1/σ1, there exists R1 >
0 such that f(t, u) ≤ (f∞+ε2)u for all t ∈ [0, 1], u ∈
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(R1,+∞), where ε2 > 0, satisfies σ1(f∞ + ε2) ≤ 1.
Set M = maxt∈[0,1],u∈[0,R1]

f(t, u), Then, f(t, u) ≤
M + (f∞ + ε2)u.

Choose R1 ≥ max{r1, R1, (Mσ1 + σ2)(1 −
σ1(f

∞ + ε2))
−1}. Then for t ∈ [0, 1], u ∈ ∂KR1 ,

from Lemma 7 and ∥u∥ = max0≤t≤1

∣∣u(t)∣∣ = R1,
we also get

∥Tu∥ = max
t∈[0,1]

(Tu)(t)

= max
t∈[0,1]

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

≤
∫ 1

0
G(τ(s), s)p(s)(M + (f∞ + ε2)u(s))ds

+

∫ 1

0
G(τ(s), s)q(s)ds

≤M

∫ 1

0
G(τ(s), s)p(s)ds

+ (f∞ + ε2)

∫ 1

0
G(τ(s), s)p(s)ds∥u∥

+

∫ 1

0
G(τ(s), s)q(s)ds

=Mσ1 + σ2 + (f∞ + ε2)σ1R1

≤ [1− σ1(f
∞ + ε2)]R1 + (f∞ + ε2)σ1R1

= R1 = ∥u∥.

So, we have

∥Tu∥ ≤ ∥u∥, u ∈ ∂KR1 . (12)

Case 2. When the condition (H4) holds. From (5)
and (6), for u ∈ ∂Kr2 , we have ∥u∥ = r2 for t ∈ Jθ.
Therefore, we have

∥Tu∥ = max
t∈[0,1]

(Tu)(t)

= max
t∈[0,1]

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

≥ min
t∈Jθ

∫ 1

0
G(t, s)p(s)f(s, u(s))ds

≥ γ

∫ 1

0
G(τ(s), s)p(s)f(s, u(s))ds

≥ γ
r2

γ
∫ 1
0 G(τ(s), s)p(s)ds

∫ 1

0
G(τ(s), s)p(s)ds

= r2 = ∥u∥.

Therefore,

∥Tu∥ ≥ ∥u∥, u ∈ ∂Kr2 . (13)

On the other hand, for u ∈ ∂KR2 , we have ∥u∥ = R2

for t ∈ [0, 1], from Lemma 7 and (H4), we obtain

∥Tu∥ = max
t∈[0,1]

(Tu)(t)

= max
t∈[0,1]

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

=

∫ 1

0
G(τ(s), s) [p(s)f(s, u(s)) + q(s)] ds

≤ R2 − σ2
σ1

∫ 1

0
G(τ(s), s)p(s)ds

+

∫ 1

0
G(τ(s), s)q(s)ds

= R2 = ∥u∥.

So, we have

∥Tu∥ ≤ ∥u∥, u ∈ ∂KR2 . (14)

Applying Lemma 5 to (11) and (12), or (13) and (14),
one yields that T has a fixed point u ∈ P ∩ (KR1 \
Kr1) or u ∈ P ∩ (KR2 \Kr2) with u(t) ≥ γ∥u∥ > 0,
t ∈ [0, 1]. Thus it follows that BVP (1) has a positive
solution u. We complete the proof of Theorem 12. ⊓⊔

Similarly, we have the following result.

Theorem 13. Assume that (B1)–(B2) hold. And sup-
poses that the following condition is satisfied.

(H5) f
0 < 1/σ1 and f∞ > 1/(γ2σ1)(particularly,
f0 = 0 and f∞ = ∞).

Then BVP (1) has at least one positive solution.

Theorem 14. Assume that (B1)–(B3) hold. And sup-
poses that the following two conditions are satisfied.

(H6) f0 > 1/(γ2σ1) and f∞ > 1/(γ2σ1) (particu-
larly, f0 = f∞ = ∞.)

(H7) there exist a constant c > σ2 > 0 and
a closed interval [a, b] ⊂ [0, 1], such that
maxt∈[a,b],u∈∂Kc

f(t, u) < (c− σ2)/σ1.

Then BVP (1) has at least two positive solutions
u1, u2, which satisfy

0 < ∥u1∥ < c < ∥u2∥. (15)

Proof: On the one hand, we consider condition (H6).
Choose r,R with 0 < r < 1 < R. If f0 > 1/(γ2σ1),
then similar to the proof of (11), we have

∥Tu∥ ≥ ∥u∥, u ∈ ∂Kr. (16)

If f∞ > 1/(γ2σ1), then similar to the proof of (11),
we also have

∥Tu∥ ≥ ∥u∥, u ∈ ∂KR. (17)
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On the other hand, together with (H7), u ∈ ∂Kc,
we have

∥Tu∥ = max
t∈[0,1]

(Tu)(t)

= max
t∈[0,1]

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

=

∫ 1

0
G(τ(s), s) [p(s)f(s, u(s)) + q(s)] ds

<
c− σ2
σ1

∫ 1

0
G(τ(s), s)p(s)ds

+

∫ 1

0
G(τ(s), s)q(s)ds = c = ∥u∥.

Therefore,

∥Tu∥ < ∥u∥, u ∈ ∂Kc. (18)

Applying Lemma 5 to (16)-(18), one yields that T has
a fixed point u1 ∈ P ∩ (Kc \ Kr), and a fixed point
u2 ∈ P ∩ (KR \ Kc) with ui(t) ≥ γ∥u∥ > 0, t ∈
[0, 1], i = 1, 2. Thus it follows that BVP (1) has at
least two positive solutions u1 and u2. Noticing (18),
we have ∥u1∥ ̸= c, ∥u2∥ ̸= c. Therefore (15) holds,
We complete the proof of Theorem 14. ⊓⊔

Similarly, we have the following results.

Theorem 15. Assume that (B1)–(B2) hold. And sup-
poses that the following two conditions are satisfied:

(H8) f
0 < 1/σ1 and f∞ < 1/σ1( particularly, f0 =
f∞ = 0).

(H9) there exist a constant B > 0 and a closed inter-
val [a, b] ⊂ [0, 1], such that

max
t∈[a,b],u∈∂KB

f(t, u) > B/(γσ1).

Then BVP (1) has at least two positive solutions
u1, u2, which satisfy

0 < ∥u1∥ < B < ∥u2∥.

In the following arguments, we focus on the re-
sults of nonexistence of positive solutions for BVP
(1).

Theorem 16. Assume that (B1)–(B2) hold. And sup-
poses that one of the following conditions is satisfied.

(H10) f(t, u) < (u− σ2)/σ1, ∀ t ∈ [0, 1], u > σ2.

(H11) f(t, u) > u/γ2σ1, ∀ t ∈ [0, 1], u > 0.

Then BVP (1) has no positive solution.

Proof: Assume to the contrary that u(t) is a positive
solution of the BVP (1). Then, u ∈ K,u(t) > 0 for
t ∈ (0, 1).
Case 1. For u > σ2, from Lemma 7 and ∥u∥ =
max0≤t≤1

∣∣u(t)∣∣ we get

∥u∥ = max
t∈[0,1]

|u(t)|

= max
t∈[0,1]

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

<

∫ 1

0
G(τ(s), s)p(s)

u− σ2
σ1

ds

+

∫ 1

0
G(τ(s), s)q(s)ds

≤
∫ 1

0
G(τ(s), s)p(s)

∥u∥
σ1

ds

− σ2
σ1

∫ 1

0
G(τ(s), s)p(s)ds+

∫ 1

0
G(τ(s), s)q(s)ds

=
1

σ1

∫ 1

0
G(τ(s), s)p(s)ds∥u∥ = ∥u∥.

which is a contradiction. Thus BVP (1) has no posi-
tive solution.

Case 2. For u > 0, from Lemma 7 and (5) we also
get

∥u∥ = max
t∈[0,1]

|u(t)|

= max
t∈[0,1]

∫ 1

0
G(t, s) [p(s)f(s, u(s)) + q(s)] ds

≥ min
t∈Jθ

∫ 1

0
G(t, s)p(s)f(s, u(s))ds

≥ γ

∫ 1

0
G(τ(s), s)p(s)f(s, u(s))ds

> γ

∫ 1

0
G(τ(s), s)p(s)

u(s)

γ2σ1
ds

≥ γ2

γ2σ1

∫ 1

0
G(τ(s), s)p(s)ds∥u∥ = ∥u∥.

which is a contradiction. Therefore, BVP (1) has no
positive solution. The proof is complete. ⊓⊔

4 Illustrative example
Example 17. Consider the following BVP of nonlin-
ear fractional differential equations: −D

5
2

0+
u =

| sinu| log 1
2
t(1− t)

1 + log 1
2
t(1− t)

+
1

2t
,

u(0) = u′(0) = u′′(0) = u(1) = 0,

(19)
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where, p(t) = 1, q(t) = 1
2t , f(t, u) =

| sinu| log 1
2
t(1−t)

1+log 1
2
t(1−t) .

For all u1, u2 ∈ [0,+∞), t ∈ [0, 1], we have

|f(t, u1)− f(t, u2)| ≤
log 1

2
t(1− t)

1 + log 1
2
t(1− t)

|u1 − u2|.

So, taking m(t) =
log 1

2
t(1−t)

1+log 1
2
t(1−t) ≥

2
3 > 0, we obtain

ρ =

∫ 1

0
G(τ(s), s)p(s)m(s)ds

≤
∫ 1

0
G(τ(s), s)ds <

1

Γ(52)

∫ 1

0
(1− s)

3
2ds

=
1

Γ(72)
≈ 0.3009 < 1,

C1 = ρ < 1, C2 =

∫ 1

0
G(τ(s), s)ds <∞,

C3 =

∫ 1

0
G(τ(s), s)

1

2s
ds <

∫ 1

0
G(τ(s), s)ds <∞.

According to Theorem 10 or Theorem 11, BVP (19)
has a unique positive solution.

Example 18. Consider the following BVP of nonlin-
ear fractional differential equations: −D

5
2

0+
u =

1

t(1− t)
[u]a +

1

2t
,

u(0) = u′(0) = u′′(0) = u(1) = 0.

(20)

Let f(t, u) = 1
t(1−t)u

a, p(t) = 1, q(t) =
1

2t
.

(i) when 0 < a < 1. It is easy to see that (B1)–
(B2) hold. By simple computation, we have
f0 = ∞, f∞ = 0, which satisfies the condition
(H3). Thus it follows that BVP (20) has a posi-
tive solution by Theorem 12.

(ii) when 1 < a < ∞. It is easy to see that (B1)–
(B2) hold. By simple computation, we have
f0 = 0, f∞ = ∞, which satisfies the condition
(H5). Thus it follows that BVP (20) has a posi-
tive solution by Theorem 13.

Example 19. Consider the following BVP of nonlin-
ear fractional differential equations: −D

5
2

0+
u =

∣∣∣∣∣ u lnut(1− t)

∣∣∣∣∣+ 1

2t
,

u(0) = u′(0) = u′′(0) = u(1) = 0.

(21)

Let [14 ,
3
4 ] ⊂ [0, 1], c = 1, f(t, u) =

∣∣∣∣∣ u lnut(1− t)

∣∣∣∣∣ ,
p(t) = 1, q(t) =

1

2t
∈ (12 , 1), so

σ2

σ1
∈ (12 , 1). It is

easy to see that (B1)− (B2) hold. By simple compu-
tation,

f0 = lim inf
u→0

min
t∈[0,1]

∣∣∣∣∣ u lnu

t(1− t)u

∣∣∣∣∣
= lim inf

u→0
4| lnu| = ∞,

f∞ = lim inf
u→∞

min
t∈[0,1]

∣∣∣∣∣ u lnu

t(1− t)u

∣∣∣∣∣
= lim inf

u→∞
4| lnu| = ∞.

By u ∈ ∂Kc, we have ∥u∥ = maxt∈[0,1] |u(t)| = 1,

so 0 < u(t) ≤ 1, f(t, u) =
− u lnu

t(1− t)
. Noting that

f(t, u) arrive at maximum at u = 1/e, t = 1/4 or
t = 3/4, we get

max
t∈[1/4,3/4],u∈∂Kc

f(t, u) ≤
16

3e
≈ 1.9620,

and

c− σ2

σ1
>

1∫ 1
0 G(τ(s), s)ds

− 1

≈ 1

0.0636
− 1 ≈ 14.7233.

So maxt∈[1/4,3/4],u∈∂Kc
f(t, u) < (c − σ2)/σ1, c >

σ1 > σ2 > 0. Thus it follows that BVP (21) has at
least two positive solutions u1, u2, with 0 < ∥u1∥ <
1 < ∥u2∥ by Theorem 14.

5 Conclusions
Fractional differential equations arise in many engi-
neering and scientific disciplines as the mathematical
modelling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of
complex medium, polymer rheology, bode’s analysis
of feedback amplifiers, capacitor theory, electrical cir-
cuits, electron-analytical chemistry, biology, control
theory, fitting of experimental data, and so on, and in-
volves derivatives of fractional order. Fractional dif-
ferential equations also serve as an excellent tool for
the description of hereditary properties of various ma-
terials and processes. In consequence, the subject of
fractional differential equations is gaining much im-
portance and attention. There are a large number of
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papers dealing with the existence, nonexistence, mul-
tiplicity of solutions and positive solutions with initial
or boundary value problem for some nonlinear frac-
tional differential equations. In this paper, we have
studied the existence and nonexistence of positive so-
lutions for a class of boundary value problems involv-
ing in higher-order singular nonlinear fractional dif-
ferential equation. By applying Banach fixed point
theorem, nonlinear differentiation of Leray-Schauder
type and the fixed point theorems of cone expansion
and compression of norm type, sufficient conditions
for the existence and nonexistence of positive solu-
tions have been obtained. The our results obtained are
new and interesting and the our methods can be used
to study the existence of positive solutions for other
types of boundary value problems of nonlinear frac-
tional differential equation.
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